Research Associate in Machine Learning for Information Networks

Research Associate in Machine Learning for Information Networks Sheffield, England

University of Sheffield
Full Time Sheffield, England 36333 GBP ANNUAL Today
Job description

Applications are invited for a Research Associate (RA) within the Department of Automatic Control and Systems Engineering with the University of Sheffield (http://www.sheffield.ac.uk/acse) to work on the project: “SIGNetS – Signal and Information Gathering for Networked Surveillance”. SIGNetS is a collaborative project between the University of Sheffield, University of Cambridge and the University of Surrey.

You should have, or be close to completing, a PhD degree (or have equivalent experience) in signal processing, electrical engineering, aerospace engineering, mathematics, statistics, physics or a related area. You should also have knowledge and experience of Gaussian process methods, message passing and other Bayesian approaches for nonlinear systems and inference. Additionally you should have effective communication skills along with software skills.

Flooded with information, information networks and decision making systems have to be able to cope with the deluge of data and hence solve efficiently complex and high dimensional problems. Conventional methods fall short in providing reliable solutions in such cases and a new way of thinking, new methods are needed. This project aims at developing scalable Bayesian approaches able to solve complex and high dimensional problems with multi-sensor data. One such problem is tracking groups and extended objects.

Making sense of multiple heterogeneous data is a challenging task that has been extensively studied, but the provision of reliable solutions for autonomous and semi-autonomous systems is a task that remains only partially solved. Fusion of data from multiple heterogeneous sensors of this type is part of the challenge; even more so when the autonomous decisions have to be performed in sequentially and in real-time. Capturing confidence and uncertainty from the integration of heterogeneous large-scale data remains a challenging task. This project will develop pioneering approaches that can be used in safe and reliable autonomy at different levels in sensor network systems. The main focus of SIGNetS
is on: 1) developing approaches for information networks and providing solutions with trust and hence quantifying the impact of uncertainties on the final solutions, 2) scalable methods for sensor data usion, inference and intentionality prediction and 3) sensor management of these scalable self-learning networks. SIGNetS will provide new methodology for the area of decentralised sensors in large scale surveillance, reconnaissance and intelligence gathering scenarios. The focus is on large numbers of sensors with many differing modalities which need to cooperate amongst each other without access to a fully centralised communications and processing architecture.

Uncertainty Quantification and Sensor Data Fusion
We will consider the fusion of large quantities of heterogeneous data in order to generate new and enhanced Situational Awareness and Autonomy. The ideal candidate will have knowledge of probabilistic models and methods. The project focus is on uncertainty quantification arising directly from computed posterior probabilities, which are obtained by scalable approximate procedures such as Gaussian Process methods, Message Passing and Variational Inference. The successful candidate is expected to provide mathematical results for the trustworthiness of the results of the developed approaches and algorithms. Another aspect of the project focuses on groups and extended object tracking and uncertainty quantification of the proposed solutions. These are linked with learning and intent prediction.

The project includes tight collaboration with the University of Cambridge and the University of Surrey, regular meetings and deliverables to our funders.

We’re one of the best not-for-profit organisations to work for in the UK. The University’s Total Reward Package includes a competitive salary, a generous Pension Scheme and annual leave entitlement, as well as access to a range of learning and development courses to support your personal and professional development.

We build teams of people from different heritages and lifestyles from across the world, whose talent and contributions complement each other to greatest effect. We believe diversity in all its forms delivers greater impact through research, teaching and student experience.

To find out what makes the University of Sheffield a remarkable place to work, watch this short film: www.youtube.com/watch?v=7LblLk18zmo, and follow @sheffielduni and @ShefUniJobs on Twitter for more information.

Apply now by clicking on the Apply button located near the top left of your screen

Research Associate in Machine Learning for Information Networks
University of Sheffield

www.sheffield.ac.uk
Sheffield, United Kingdom
Professor Koen Lamberts
$100 to $500 million (USD)
5001 to 10000 Employees
College / University
Colleges & Universities
Education
1905
Related Jobs

All Related Listed jobs

Beers, Wines & Spirits Specialist, Supermarket Assistant
Waitrose Bracknell, England 11.34 - 12.44 GBP HOURLY Today

The role of a Supermarket Assistant involves a range of tasks, including advising and serving customers, moving and replenishing stock, carrying out

database developer
ACT Credit Management Glasgow, Scotland 56711 - 37102 GBP ANNUAL Today

This is a 6 month contract to focus on two key projects.

Responsibilities

Development of CRM system (SQL and Database...

Cleaner Supervisor
Churchill Contract Services Saint Agnes, England 12.1 GBP HOURLY Today

The successful applicant would be a working supervisor leading a team of three other employees in cleaning the school daily and then locking the school, if we

Remote Data Input Operator
BFFG Solutions Newcastle upon Tyne, England Today

You will be responsible for ensuring that all data is entered in a timely manner, with a high degree of accuracy and attention to detail.

Business Conduct & Ethics Associate, Language Specific, Forensic & Integrity Services, Belfast
EY Belfast, Northern Ireland 26400 - 34706 GBP ANNUAL Today

Conducting and reviewing risk assessments on client organisations and/or their third parties. Fluency or advanced working proficiency (including reading